Füllstandgrenzschalter liquiphant FTL 360 / FTL 361

Vibrationsgrenzschalter Liquiphant II. Für alle Flüssigkeiten.

Füllstandgrenzschalter Liquiphant

- FTL 360, kompakte Bauform
- FTL 361, Verlängerungsrohr
- mit verschiedenen Prozeßanschlüssen
- mit Kunststoffgehäuse, Aluminiumgehäuse oder Gehäuse aus korrosionsbeständigem Stahl

Einsatzbereiche

Der Liquiphant ist ein Füllstandgrenzschalter für alle Flüssigkeiten. Er kann in Tanks und Behältern obere und untere Grenzstände überwachen und eignet sich für alle Flüssigkeiten,

- deren Temperatur zwischen
 -40 °C und +150 °C liegt
- die eine Viskosität bis zu 10.000 mm²/s (cSt) haben
- mit einer Dichte ab 0,5 g/cm³

Für besonders aggressive Medien sind die kunststoffbeschichteten Ausführungen oder die Hastelloy–Ausführung voraesehen.

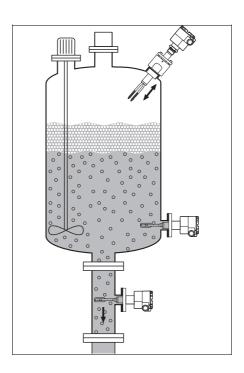
Der Liquiphant kommt überall dort zum Einsatz, wo bisher Schwimmerschalter verwendet wurden — aber auch dort, wo Schwimmerschalter nicht geeignet sind (wegen Ansatzbildung, Turbulenzen, Strömungen oder Luftblasen in der Flüssigkeit).

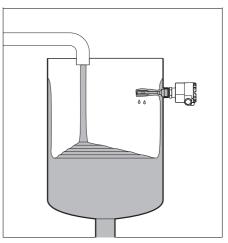
Vorteile auf einen Blick

- Wartungsfrei: Funktionssicher auch bei starker Ansatzbildung.
- Kostengünstig: Ein preiswertes Standardgerät, universell einsetzbar. Arbeitet funktionssicher in Flüssigkeiten aller Art, unabhängig von Turbulenzen oder elektrischen Eigenschaften, Feststoff- oder Gasanteilen, Schaumbildung oder Behältervibration.
- Schaltgenau: Millimetergenauer konstanter Schaltpunkt ohne Abgleich.
- Funktionssicher: Durch den optimierten, patentierten Antrieb mit intelligenter Ansteuerung ist der Liquiphant konkurrenzlos vibrationsverträglich.
 Die Schwinggabel wird elektronisch auf Korrosion überwacht.
- Überfüllsicherung nach WHG und VbF (Gefahrklasse A III)
- Praxisbewährt: Eine Million installierte Vibrations-Grenzschalter

Funktionsprinzip

Funktionsweise des Liquiphant


Der Sensor in Form einer Stimmgabel wird piezoelektrisch auf seiner Resonanzfrequenz zum Schwingen angeregt. Durch das Eintauchen in die Flüssigkeit verändert sich die Resonanzfrequenz. Diese Frequenzänderung wird ausgewertet und in ein Schaltsignal umgesetzt. Mit der eingebauten Umschaltmöglichkeit für Minimum- oder Maximum–Sicherheit kann man den Liquiphant für jeden Anwendungsfall im erforderlichen Sicherheitsbetrieb verwenden.


Einbaumöglichkeiten

Eine große Auswahl praxisgerechter Bauformen, Prozeßanschlüsse und hochkorrosionsbeständiger Werkstoffe ermöglicht die Grenzstanddetektion in Tanks und Rohrleitungen mit Flüssigkeiten aller Art.

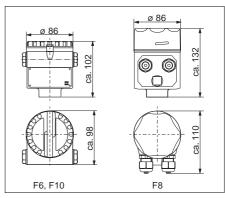
Hier ein paar Beispiele:

- ☐ Einbau von oben zur Überwachung des maximalen Füllstands, wahlweise mit Schiebemuffe zum Einstellen des Schaltpunkts.
- ☐ Seitlicher Einbau zur Überwachung des minimalen Füllstands.
- ☐ Einbau in Rohrleitung als Trockenlaufschutz für die Pumpe.

Funktionssicherer Füllstandgrenzschalter, selbst bei klebrigen, ansatzbildenden, aggressiven, bewegten, perlenden oder schäumenden Flüssigkeiten

Geräteausführungen

Gehäuse F8


- Liquiphant als Kompaktausführung oder mit Verlängerungsrohr
- Prozeßanschluß: Einschraubstück, Flansch oder Lebensmittelausführung
- Elektronikeinsatz für Wechselstrom oder Gleichstrom, mit elektronischem Schalter oder Relaiskontakt
- Gehäuseausführung

F6: Aluminiumgehäuse

F8: Gehäuse aus

korrosionsbeständigem Stahl

F10: Polyestergehäuse (PBT)

Gehäuseausführungen

Prozeßanschlüsse

Praxisorientierte Prozeßanschlüsse und Bauformen ermöglichen die optimale Anpassung an die Einbauverhältnisse

- ☐ Einschraubstück G 1 A oder 1" NPT ☐ Flansche nach verschiedenen Nor-
- men: DIN, ANSI, JIS

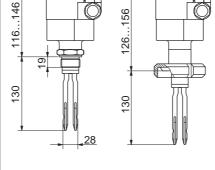
Für besondere Hygieneanforderungen, z.B. bei Lebensmitteln:

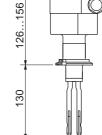
- ☐ Milchrohrverschraubung
- ☐ Schnellkupplung (Triclamp[®])
- ☐ Einschweißmuffe für frontbündigen Prozeßanschluß

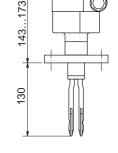
Schwinggabel und Verlängerungsrohr sind poliert.

Werkstoffe für die Prozeßanschlüsse:

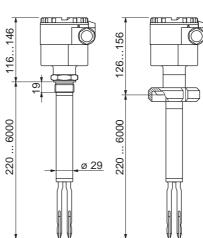
- Korrosionsbeständiger Stahl 1.4571 oder Hastelloy C 2.4610,
- Flanschausführung zusätzlich mit ECTFE- (Halar®-) Beschichtung oder mit PFA-Beschichtung möglich.

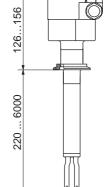


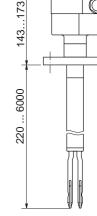

Rohrverschraubung DIN 11851, DN 50

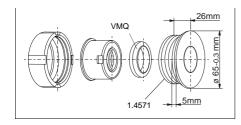

Triclamp-Kupplung ISO 2852, 2"

Flanschversion DIN, ANSI, JIS


FTL 360 Kompaktausführungen

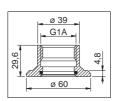






oben: Einschweißmuffe mit Schwingabelausrichtung für FTL 360 mit G1A-Gewinde für frontbündige Montage

Bestell-Nr. 215 159-0000

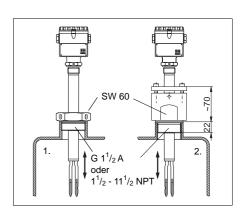

(Formdichtung)

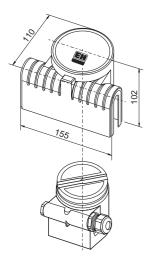
unten:


FTL 361

Einschweißmuffe

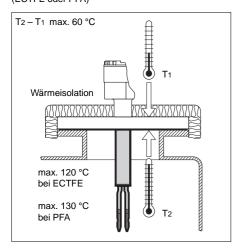
ohne Schwinggabelausrichtung für FTL 360 mit G1A-Gewinde für frontbündige Montage. Werkstoff: 1.4301; mit FPM-O-Ring. Bestell-Nr. 917 969-1000


Lose Flansche für FTL 360 / 361 mit Einschraubstück G1A


Schiebemuffen

für FTL 361zur stufenlosen Einstellung des Schaltpunkts

- 1. Schiebemuffe für atmosphärischen Druck
- 2. Hochdruckschiebemuffe für Druck bis 40 bar.



Einbauhinweise

Wetterschutzhaube für Gehäuse F6, F10; Werkstoff Polyamid. Bei Montage im Freien schützt die Wetterschutzhaube das Gerät vor zu hohen Temperaturen und vor Kondensatbildung im Gehäuse, welche bei starken Temperaturschwankungen auftreten kann.

Liquiphant mit Kunststoff-Beschichtung (ECTFE oder PFA)

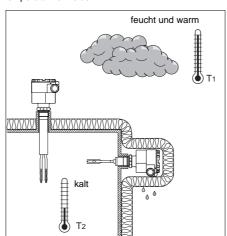
Bitte beachten Sie bei der Montage des Liquiphant:

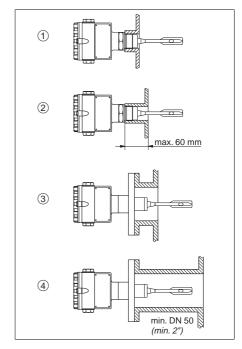
- Die Vibration der Schwinggabel darf nicht blockiert werden, z. B. durch anhaftendes Material.
- Bei Ansatzbildung muß genügend Abstand zur Behälter- bzw. Rohrwandung vorhanden sein.

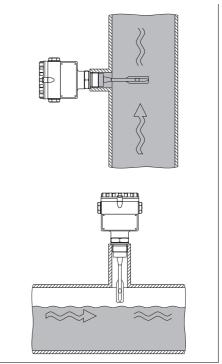
Montage auf Stutzen

In Abhängigkeit von der Viskosität ist in Bezug auf die Stutzenlänge und dem Einbau der Schwingabel zu beachten:

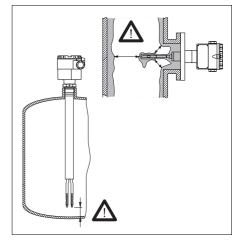
- Generell gilt: Prozeßanschluß vorzugsweise bündig mit Behälterwand.
- Bei dünnflüssigen Medien Schwingabel so montieren, daß Flüssigkeit aus dem Stutzen ablaufen kann und Schwinggabel freigibt.
- Bei zähflüssigen Medien Stutzen max. 60 mm lang (bei ø 1").
 Besser: Stutzen mit größerem Durchmesser einsetzen.
- 4. Schwinggabel im Rohr: min. DN 50 bei dünnflüssigen Medien


Montage am Rohr


- Beim Einsatz als Trockenlaufschutz bei Pumpen vorzugsweise Liquiphant in senkrechtem Rohr montieren.
- Bei der Festlegung der Länge des Montagestutzens auf Rohrdurchmesser achten.
- Bei Montage in waagrechtem Rohr kann Teilbefüllung durch die Wahl der richtigen Stutzenlänge detektiert werden.


Liquiphant mit Kunststoff-Beschichtung

- maximale Betriebstemperatur bei ECTFE 120 °C, bei PFA 130 °C
- Temperaturdifferenz T2 T1 zwischen Innen- und Außenseite des Flansches darf 60 °C nicht übersteigen, d. h. gegebenenfalls den Flansch außen mit Wärmedämmung versehen.


Kondensat im Gehäuse bei hoher Luftfeuchtigkeit und niedriger Mediumstemperatur vermeiden: FTL 361 einsetzen, Länge min. 220 mm, oder Gehäuse isolieren.

Die Schwinggabel darf weder die Behälter- oder Rohrwand noch den Materialansatz berühren.

Elektrischer Anschluß

Elektronische Schalter (Elektronikeinsätze) mit

Elektronikeinsätze

- ☐ Zweidraht-Wechselstromanschluß
- ☐ Dreidraht-Gleichstromanschluß PNP
- ☐ Dreidraht-Gleichstromanschluß NPN
- ☐ Allstromanschluß; mit potentialfreiem Relaiskontakt

Die Elektronikeinsätze sind austauschbar. Ein Neuabgleich ist dann nicht erforderlich!

CE-Kennzeichen

Das Gerät erfüllt die gesetzlichen Anforderungen aus den EU-Richtlinien: Richtlinie 89/336/EWG (elektromagnetische Verträglichkeit), Richtlinien 73/23/EWG und 93/68/EWG (Niederspannungs-Richtlinie).

Elektromagnetische Verträglichkeit

Störfestigkeit nach EN 50082-2 und Industriestandard NAMUR, mit Feldstärke 10 V/m. Störaussendung nach EN 50081-1.

Allgemeine Hinweise zur EMV (Prüfverfahren, Installationsempfehlungen) siehe TI 241F/00/d.

FEL 31

Zweidraht-Wechselstromanschluß 21 V ... 253 V, 50 / 60 Hz

- Laststrom bis 1,5 A / 40 ms max. 375 VA / 250 V max. 36 VA / 24 V bzw. Laststrom dauernd bis 350 mA max. 87 VA / 250 V max. 8,4 VA / 24 V
- Mindestlast min. 2,5 VA / 250 V (10 mA) min. 0,5 VA / 24 V (20 mA)
- Reststrom im gesperrten Zustand klei-
- Spannungsabfall über dem elektronischen Schalter im durchgeschalteten Zustand kleiner 10 V
- FEL 31 nie ohne Last betreiben!

FEL 32

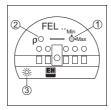
Dreidraht-Gleichstromanschluß PNP

- Laststrom bis 350 mA dauernd, kurzfristig 1 A, max. 1 s max. 55 V, mit Überlast- und Verpolungsschutz
- Reststrom im gesperrten Zustand kleiner 100 µA
- Stromaufnahme max. 15 mA

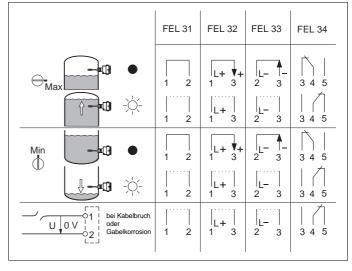
FFI 33

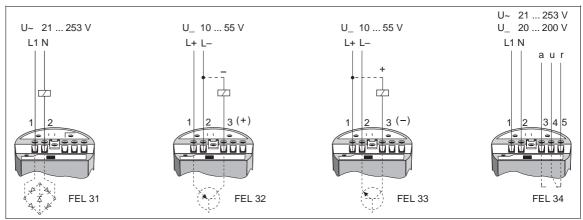
Dreidraht-Gleichstromanschluß NPN

- Laststrom bis 350 mA dauernd, kurzzeitig 1 A, max. 1 s max. 55 V, mit Überlast- und Verpolungsschutz
- Reststrom im gesperrten Zustand kleiner 100 µA
- Stromaufnahme max. 15 mA


FEL 34

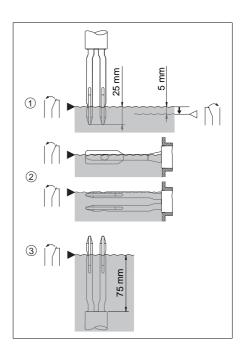
Allstromanschluß für Wechselstrom 21 V ... 253 V, 50 / 60 Hz oder Gleichstrom 20 V ... 200 V. Stromaufnahme max. 7 mA. Potentialfreier Relaiskontakt, belastbar


- bei Wechselstrom bis 250 V, bis 6 A $P \sim \text{max. } 1500 \text{ VA}, \cos \varphi = 1$ $P \sim \text{max. } 750 \text{ VA, } \cos \phi > 0.7$
- bei Gleichstrom 20 V bis 200 V, P = max. 200 W



- 1 Maximum-/Minimum-Sicherheit am Elektronikeinsatz umschaltbar
- 2. Schalter zum Einstellen der Flüssiakeitsdichte: $\rho > 0.5$: z.B. für Flüssiggase; Standardeinstellung
- 3. Leuchtdiode zeigt Schaltzustand an

Funktion und Schaltweise der Elektronikeinsätze



Einstellung des Schaltpunktes

Wenn der Schaltpunkt millimetergenau eingestellt werden soll, so ist die nebenstehende Abbildung zu beachten:

- 1. Einbau von oben
- 2. waagrechter Einbau mit Schwinggabel nebeneinander bzw.
- 3. Schwinggabel übereinander Einbau von unten

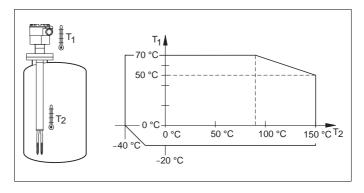
Die Schaltpunkt-Angaben beziehen sich auf Wasser (Dichte 1 g/cm³). Bei extrem leichten Flüssigkeiten (verflüssigte Gase) ist am Liquiphant ein Schalter auf »Dichte 0,5« einzustellen.

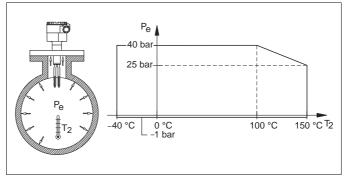
Technische Daten

Betriebsdaten

Betriebsdruck im Tank: bis 40 bar, zulässige Temperatur siehe untenstehende Grafik Prüfdruck: bis 60 bar Betriebstemperatur im Tank: -40 °C...+150 °C Umgebungstemp. am Gehäuse: -20 °C...+70 °C Viskosität des Füllguts: bis 10000 mm²/s Minimale Dichte des Füllguts: 0,5 g/cm³ Schalthysterese: ca. 5 mm Schaltverzögerung: beim Bedecken ca. 0,4 s, beim Freiwerden ca. 1 s Sicherheitsschaltung: Min./Max. wählbar Schaltanzeige:

Leuchtdiode auf Elektronikeinsatz

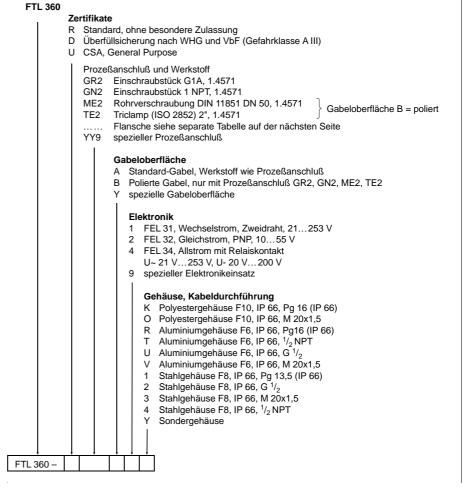

Werkstoffe für die Sensoren


- Korrosionsbeständiger Stahl 1.4581, wahlweise poliert
- Korrosionsbeständiger Stahl 1.4581, mit ECTFE oder PFA beschichtet, zusammen mit beschichteten Flanschen
- Hastelloy C 2.4610

Zubehör

- ☐ Schiebemuffe für stufenloses Einstellen des Schaltpunktes
 - Niederdruck-Schiebemuffe
 - Hochdruck-Schiebemuffe
- □ Lose Flansche
- ☐ Klarsichtdeckel, dadurch ist Schaltanzeige (LED) sichtbar

Die maximal zulässige Temperatur T_1 am Gehäuse hängt von der Betriebstemperatur T_2 im Tank ab.



Der maximal zulässige Behälterdruck p_e hängt von der Betriebstemperatur T_2 ab.

Produktübersicht

Weitere Varianten für Prozeßanschlüsse, Werkstoffe, Elektronikeinsätze, Gehäuse auf Anfrage

Liquiphant FTL 360, kompakte Bauform

Liquiphant FTL 361 mit Verlängerungsrohr

Produktübersicht für Flansche

rsicht	DIN-Flansche (Hastelloy-plattierter Flansch in Form C)		ANSI-Flansche (RF)		
•	(i idoleii	oy-plattierter rianscriii roini oj			
	BA2	DN 32, PN 6, 1.4571	AA2	1 1/4", 150 psi, 1.4571	
	CA5	DN 32, PN 6, Hastelloy-plattiert		, , , , , ,	
		, , , , , , , , , , , , , , , , , , , ,	AC2	1 1/2", 150 psi, 1.4571	
	BB2	DN 32, PN 40, 1.4571	AC7	1 1/2", 150 psi, 1.4571/ECTFE	
	BC2	DN 40, PN 6, 1.4571	AE2	2", 150 psi, 1.4571	
			AE7	2", 150 psi, 1.4571/ECTFE	
	BD2	DN 40, PN 40, 1.4571	AE5	2", 150 psi, Hastelloy-plattiert	
	BD7	DN 40, PN 40, 1.4571/ECTFE			
			AG2	2", 300 psi, 1.4571	
	BE2	DN 50, PN 6, 1.4571	AG7	2", 300 psi, 1.4571/ECTFE	
	BE7	DN 50, PN 6, 1.4571/ECTFE	AG5	2", 300 psi, Hastelloy-plattiert	
	CE5	DN 50, PN 6, Hastelloy-plattiert			
		• • •	AK2	2 1/2", 300 psi, 1.4571	
	BG2	DN 50, PN 40, 1.4571			
	BG7	DN 50, PN 40, 1.4571/ECTFE	AL2	3", 150 psi, 1.4571	
	CG5	DN 50, PN 40, Hastelloy-plattiert	AL7	3", 150 psi, 1.4571/ECTFE	
	CG2	DN 50, PN 40, 1.4571 mit Dichtleiste		, ,	
	NG2	DN 50, PN 40, 1.4571 mit Nut	AN2	3", 300 psi, 1.4571	
	FG2	DN 50, PN 40, 1.4571 mit Feder		, ,	
		,	AP2	4", 150 psi, 1.4571	
	BK2	DN 65, PN 40, 1.4571	AR2	4", 300 psi, 1.4571	
			AV2	6", 150 psi, 1.4571	
	BM2	DN 80, PN 16, 1.4571	A12	6", 150 psi, 1.4571	
	BN2	DN 80, PN 40, 1.4571	JIS-Fla	JIS-Flansche nach JIS B 2210	
	BN7	DN 80, PN 40, 1.4571/ECTFE			
	CN5	DN 80, PN 40, Hastelloy-plattiert	KE2	10 K, 50, 1.4571	
	CN2	DN 80, PN 40, 1.4571 mit Dichtleiste	KE7	10 K, 50, 1.4571/ECTFE	
			KE5	10 K, 50, Hastelloy-plattiert	
	BQ2	DN 100, PN 16, 1.4571		, ,	
	BQ7	DN 100, PN 16, 1.4571/ECTFE	YY9	andere Flansche, andere Werkstoffe	
	CQ5	DN 100, PN 16, Hastelloy-plattiert		auf Anfrage	
	CQ2	DN 100, PN 16, 1.4571 mit Dichtleiste		- 3 -	
Flansche für Liquiphant FTL 360 und FTL 361	BR2	DN 100, PN 40, 1.4571			

Ergänzende **Dokumentation**

Zulassungen als Überfüllsicherung

Für nichtbrennbare wassergefährdende Flüssigkeiten:

DIBt-Prüfbescheid PA-VI 810.80 Zertifikat ZE 102F/00/d

Für brennbare Flüssigkeiten der Gefahrklasse A III: Prüfungsschein PTB Nr. III B/S 2304 F und Bauartzulassungsbescheinigung Zertifikat ZE142F/00/d

Separatgehäuse HTL 10 E

Für den Elektronikeinsatz FEL; größerer Umgebungstemperaturbereich für das Sensorgehäuse und leichtere Bedienbarkeit bei beengten Einbauverhältnissen.

Technische Information TI 274F/00/de

Deutschland			Österreich	Schweiz			
Endress+Hauser Meßtechnik GmbH+Co.							
Techn. Büro Hamburg	Büro Hannover	Techn. Büro Ratingen	Endress+Hauser	Endress+Hauser AG			
Am Stadtrand 52	Brehmstraße 13	Eisenhüttenstraße 12	Ges.m.b.H.	Sternenhofstraße 21			
22047 Hamburg	30173 Hannover	40882 Ratingen	Postfach 173	4153 Reinach/BL 1			
Tel. (040) 694497-0	Tel. (05 11) 28372-0	Tel. (02102) 859-0	1235 Wien	Tel. (061) 7 15 75 75			
Fax (040) 694497-50	Fax (05 11) 28 17 04	Fax (02102) 85 91 30	Tel. (01) 88056-0	Fax (061) 7111650			
			Fax (01) 880 56 35	http://www.endress.com			
Techn. Büro Frankfurt	Techn. Büro Stuttgart	Techn. Büro München	http://www.endress.com	info@ch.endress.com			
Eschborner Landstr. 42	Mittlerer Pfad 4	Stettiner Straße 5					
60489 Frankfurt	70499 Stuttgart	82110 Germering					
Tel. (069) 97885-0	Tel. (07 11) 13 86-0	Tel. (089) 84009-0					
Fax (069) 7894582	Fax (07 11) 1386-222	Fax (0.89) 8.41.44.51					

Techn. Büro Teltow Potsdamer Straße 12a 14513 Teltow Tel. (03328) 4358-0 Fax (03328) 435841

Vertriebszentrale Deutschland:

01.99/MTM

Endress+Hauser Meßtechnik GmbH+Co. • Postfach 2222 79574 Weil am Rhein • Tel. (07621) 975-01 • Fax (07621) 975555

http://www.endress.com @149 info@de.endress.com

