BECKHOFF New Automation Technology

Documentation | EN EP1122-0001 2-port EtherCAT junction

Table of contents

1	Fore	preword				
	1.1	Notes or	the documentation	5		
	1.2	Safety in	structions	6		
	1.3	Docume	ntation Issue Status	7		
2	Ethe	rCAT Box	- Introduction	8		
3	Prod	uct overv	iew	10		
	3.1	Introduct	ion	10		
	3.2	Technica	ıl data	11		
	3.3	Scope of	supply	13		
	3.4	Technolo	pgy	14		
		3.4.1	EtherCAT data flow	14		
4	Basi	c functior	n principles of EtherCAT junctions	15		
5	Mour	nting and	connection	23		
	5.1	Dimensio	ons	23		
	5.2	Fixing		24		
	5.3	Connecti	on	25		
		5.3.1	Overview	25		
		5.3.2	EtherCAT	26		
		5.3.3	Supply voltages	28		
	5.4	UL Requ	irements	31		
	5.5	ATEX no	ites	32		
		5.5.1	ATEX - Special conditions	32		
		5.5.2	BG2000 - EtherCAT Box protection enclosures	33		
		5.5.3	ATEX Documentation	34		
	5.6	Disposal		35		
6	Com	missionir	ng	36		
	6.1	Integratio	on in TwinCAT	36		
7	Арре	endix		37		
	7.1	General	operating conditions	37		
7.2 Accessories		Accesso	ries	38		
	7.3 Version identification of EtherCAT devices		dentification of EtherCAT devices	39		
		7.3.1	General notes on marking	39		
		7.3.2	Version identification of EP/EPI/EPP/ER/ERI boxes	40		
		7.3.3	Beckhoff Identification Code (BIC)	41		
		7.3.4	Electronic access to the BIC (eBIC)	43		
	7.4	.4 Support and Service				

BECKHOFF

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] and XPlanar[®] are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT[®] is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Description of instructions

In this documentation the following instructions are used. These instructions must be read carefully and followed without fail!

▲ DANGER

Serious risk of injury!

Failure to follow this safety instruction directly endangers the life and health of persons.

Risk of injury!

Failure to follow this safety instruction endangers the life and health of persons.

Personal injuries!

Failure to follow this safety instruction can lead to injuries to persons.

NOTE

Damage to environment/equipment or data loss

Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.

Tip or pointer

This symbol indicates information that contributes to better understanding.

1.3 Documentation Issue Status

Version	Comment				
1.4	Introduction updated				
	Chapter "Supply voltages" updated				
1.3	Dimensions updated				
	UL requirements updated				
	Technical data updated				
1.2	First publication in PDF format				
1.1	Foreword updated				
	Mounting and connection updated				
1.0	First release				

Firmware and hardware versions

This documentation refers to the firmware and hardware version that was applicable at the time the documentation was written.

The module features are continuously improved and developed further. Modules having earlier production statuses cannot have the same properties as modules with the latest status. However, existing properties are retained and are not changed, so that older modules can always be replaced with new ones.

Documentation	Firmware	Hardware
1.4	02	05
1.3	02	05
1.2	02	05

The firmware and hardware version (delivery state) can be found in the batch number (D-number) printed on the side of the EtherCAT Box.

Syntax of the batch number (D-number)

D: WW YY FF HH

WW - week of production (calendar week) YY - year of production FF - firmware version HH - hardware version Example with D no. 29 10 02 01:

29 - week of production 29

10 - year of production 2010

- 02 firmware version 02
- 01 hardware version 01

Further information on this topic: <u>Version identification of EtherCAT devices</u> [) <u>39</u>].

2 EtherCAT Box - Introduction

The EtherCAT system has been extended with EtherCAT Box modules with protection class IP67. Through the integrated EtherCAT interface the modules can be connected directly to an EtherCAT network without an additional Coupler Box. The high-performance of EtherCAT is thus maintained into each module.

The extremely low dimensions of only $126 \times 30 \times 26.5 \text{ mm}$ (h x w x d) are identical to those of the Fieldbus Box extension modules. They are thus particularly suitable for use where space is at a premium. The small mass of the EtherCAT modules facilitates applications with mobile I/O interface (e.g. on a robot arm). The EtherCAT connection is established via screened M8 connectors.

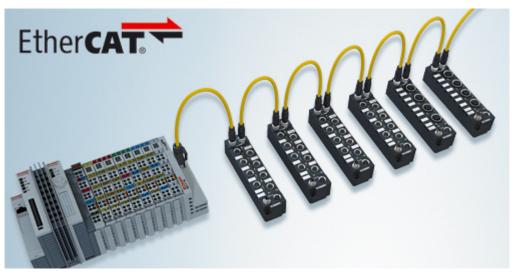


Fig. 1: EtherCAT Box Modules within an EtherCAT network

The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Control cabinets and terminal boxes are now no longer required. The modules are fully sealed and therefore ideally prepared for wet, dirty or dusty conditions.

Pre-assembled cables significantly simplify EtherCAT and signal wiring. Very few wiring errors are made, so that commissioning is optimized. In addition to pre-assembled EtherCAT, power and sensor cables, field-configurable connectors and cables are available for maximum flexibility. Depending on the application, the sensors and actuators are connected through M8 or M12 connectors.

The EtherCAT modules cover the typical range of requirements for I/O signals with protection class IP67:

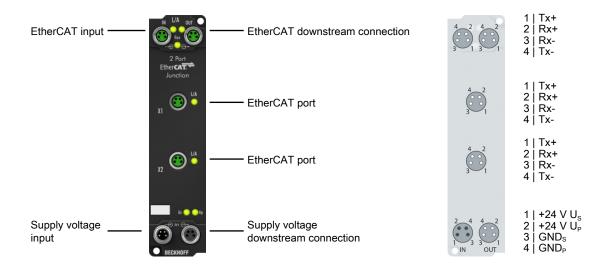
- digital inputs with different filters (3.0 ms or 10 μs)
- digital outputs with 0.5 or 2 A output current
- analog inputs and outputs with 16 bit resolution
- Thermocouple and RTD inputs
- Stepper motor modules

XFC (eXtreme Fast Control Technology) modules, including inputs with time stamp, are also available.

BECKHOFF

Fig. 2: EtherCAT Box with M8 connections for sensors/actuators

Fig. 3: EtherCAT Box with M12 connections for sensors/actuators


1

Basic EtherCAT documentation

You will find a detailed description of the EtherCAT system in the Basic System Documentation for EtherCAT, which is available for download from our website (www.beckhoff.com) under Downloads.

3 **Product overview**

3.1 Introduction

EP1122-0001 | 2-port EtherCAT junction

The 2-port EtherCAT junction enables configuration of EtherCAT star topologies. A modular EtherCAT star can be realised by using several EP1122 units in a station.

Individual devices or complete EtherCAT strands can be connected at the junction ports. The EtherCAT junctions are connected via shielded M8 screw connectors with direct display of link and activity status. The Run LED indicates the status of the EP1122. Through TwinCAT and other suitable EtherCAT masters the EP1122 also supports coupling and uncoupling of EtherCAT strands during operation (Hot Connect).

Quick links

Technical data [▶ 11] Connections [▶ 25]

3.2 Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT				
Connection	4 x M8 socket, 4-pin			
	(1 input, 3 outputs)			
Data transfer medium	EtherCAT cables			
Cable length	up to 100 m between two devices (100BASE-TX)			
Baud rate	100 Mbaud			
Electrical isolation	500 V			

Supply voltages			
Connection	Input: M8 connector, 4-pin		
	Downstream connection: M8 socket, 4-pin, black		
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)		
U _s sum current: I _{s,sum}	max. 4 A		
Current consumption from U _s	120 mA		
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)		
U _P sum current: I _{P,sum}	max. 4 A		
Current consumption from U_P	None. U_P is only forwarded.		

Housing data				
Dimensions W x H x D	30 mm x 126 mm x 26.5 mm (without connectors)			
Weight	approx. 165 g			
Installation position	variable			
Material	PA6 (polyamide)			

Environmental conditions					
Ambient temperature during operation	-25+60 °C -25+55 °C according to cURus 0+55 °C according to ATEX				
Ambient temperature during storage	-40 +85 °C				
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27 Additional checks [▶ 11]				
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4				
Protection rating	IP65, IP66, IP67 (according to EN 60529)				

Approvals / markings				
Approvals / markings *)	<u>ATEX [▶ 32]</u> , CE, <u>cURus [▶ 31]</u>			

*) Real applicable approvals/markings see type plate on the side (product marking).

Additional tests

The devices have undergone the following additional tests:

BECKHOFF

Test	Explanation		
Vibration	10 frequency sweeps in 3 axes		
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude		
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude		
Shocks	1000 shocks in each direction, in 3 axes		
	35 g, 11 ms		

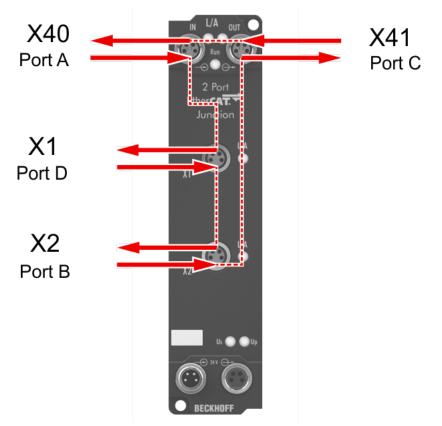
3.3 Scope of supply

Make sure that the following components are included in the scope of delivery:

- 1x EP1122-0001 EtherCAT Box
- 4x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)

Pre-assembled protective caps do not ensure IP67 protection

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.


Ensure that the protective caps are correctly seated to ensure IP67 protection.

3.4 Technology

3.4.1 EtherCAT data flow

The following figure shows the logical path of an EtherCAT frame through the box.

Ports to which no device is connected are automatically bridged.

4 Basic function principles of EtherCAT junctions

Some Beckhoff EtherCAT devices can be used for junctions in the EtherCAT segment. These include EK1122, EK1521, EP1122, CU1128 and EP9128. In the following examples only the EK1122 is used. The technical and system characteristics of the other devices are similar.

EtherCAT handling in the slaves

With EtherCAT as fieldbus protocol a wide range of bus topologies can be used: line, star and tree topology, with redundancy support even ring topology. The simplest topology is the line topology, in which each EtherCAT slave passes data **only** to the next slave.

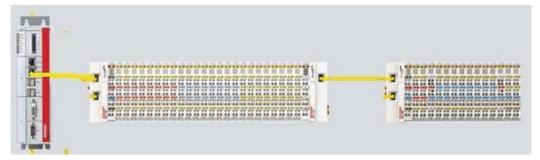


Fig. 4: EtherCAT line topology

When using EtherCAT Couplers, e.g. EK1100, it is possible to create a junction and therefore a kind of tree topology.

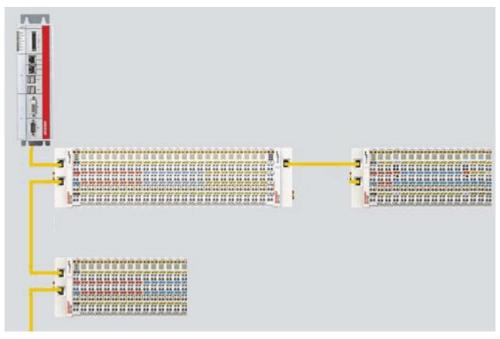


Fig. 5: Line topology with extensions

The basic principle is that internally the Ethernet frame(s) with the EtherCAT protocol data continue to be transported in a logical ring:

- the EtherCAT master sends the frame via the two outgoing lines of the Ethernet cable
- · this frame passes each slave once,
- the last logical slave reverses the frame and
- is returned to the master through each EtherCAT slave via two return lines of the Ethernet cable without further processing.

At short cycle times in the order of 50 µs at 20,000 Ethernet frames are in transit in the EtherCAT system every second, plus acyclic organizational frames. The master awaits the return of the sent frames, which return the device input data to the master, for example. Telegram transfer between slaves is link-based: An EtherCAT slave will only forward a frame if a 'link' signal to the next device is present. Normally it can be assumed that the downstream device correctly processes each EtherCAT telegram and returns or process it at the end.

The crucial factor for forwarding EtherCAT telegrams is that a link signal is reported only from one slave to the next if both slaves are actually ready for real-time participation in data processing. Specifically, this means that an EtherCAT slave should not open the respective Ethernet port until it is ready to receive and forward an Ethernet frame immediately.

A switch or router is usually used for standard Ethernet traffic forwarding. Any collisions or frame losses are compensated through frame repetition in the higher-level protocol layers (e.g. TCP). This mode is generally not used for EtherCAT due to the short cycle times and the real-time requirement. Some Ethernet devices such as special switches, for example, report a link to the remote terminal even if they will only be ready for data processing in a few milliseconds. This behavior is particularly noticeable in media converters from 100Base-TX (copper) to 100Base-Fx (optical fiber), which may report a link to the preceding EtherCAT slave even if the optical fiber connection is interrupted, depending on the setting on the copper side.

Fast link detection is therefore a central component of each **ESC** (EtherCAT Slave Controller, hardware processing unit for the EtherCAT protocol). According to the EtherCAT specification an ESC can have and control 1 to 4 ports. Via an open port it can handle outgoing and incoming Ethernet traffic. Fig. 3 shows the direction of the data flow in a fully configured ESC. In the EtherCAT datagrams the data are only processed between ports 0 (A) and 3 (D) in the EtherCAT processing unit.

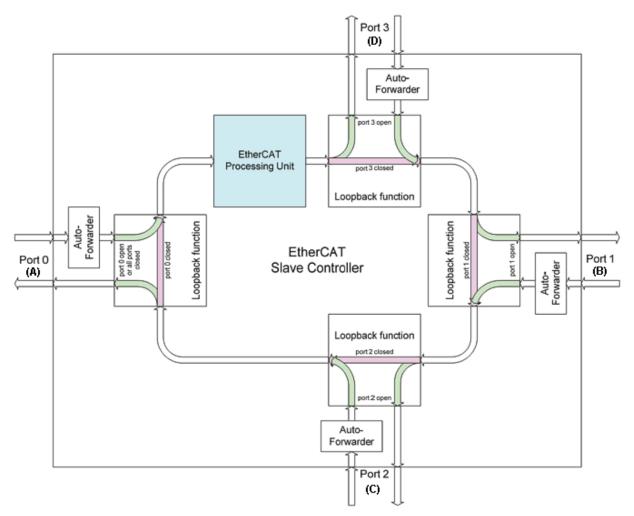


Fig. 6: Direction of data flow in the ESC

BECKHOFF

Ideally link detection and therefore port handling in the ESC should be fast enough that lost frame events are avoided even at 100 μ s cycle time. Nevertheless, at least one lost frame can never be ruled out if a connection is disconnected while an Ethernet frame is in transit on this line and in the bus segment downstream of the separation point.

Implementation: EL terminal

A standard EtherCAT slave such as a Beckhoff EL terminal has 2 ports:

- one for incoming frames (port 0 [A])
- one for outgoing frames (e.g. port [D]).

The other two ports are internally closed in the ESC. An EtherCAT telegram enters the processing unit via port 0 (A)/top and is forwarded to the next slave via port 3 (D)/left, if a link to this port exists - see green arrows. This is the case if a further EL terminal is connected to the right.

If no link exists, the frame is forwarded to port 1(B) via the purple route. This and port 2(C) have no link and therefore return the frame to port 0(A), where the frame leaves via the same Ethernet port through which it arrived at the slave. This is the case if the terminal acts as end terminal.

An EtherCAT device with a single port is therefore only of limited use, since it can only be used as end device.

Implementation: EK1100 EtherCAT Coupler

Three of the four available ports in the EK1100 EtherCAT Coupler are used, thus enabling a connection to the right to terminals and via an RJ45 socket to further couplers; cf. *Fig. Line topology with extensions*. In the EK1100 the processing unit is not used for process data exchange.

Implementation: EK1122 EtherCAT junction

In the EK1122 all four ESC ports can be connected, two via the internal E-Bus and two via the RJ45 sockets with Ethernet configuration. In the TwinCAT System Manager the link statuses of ports 0, 1, 2 and 3 are indicated via the online display as port A, B, C and D, see *Fig. Topology display for interrupted line*.

Implementation: EK1521/EK1521-0010/EK1561 EtherCAT junction

As in the EK1100, three ESC ports can be connected in these junctions. Two via E-bus within the terminal and one via the SC socket/versatile link and optical fiber cable/POF line.

Implementation: CU1128 and EP9128 EtherCAT junctions

The CU1128 integrates three ESCs, which means eight ports in total are available to users. The three ESCs are interconnected via E-bus.

Example configuration with EK1122

The following section describes the link characteristics under TwinCAT and its representation in the System Manager.

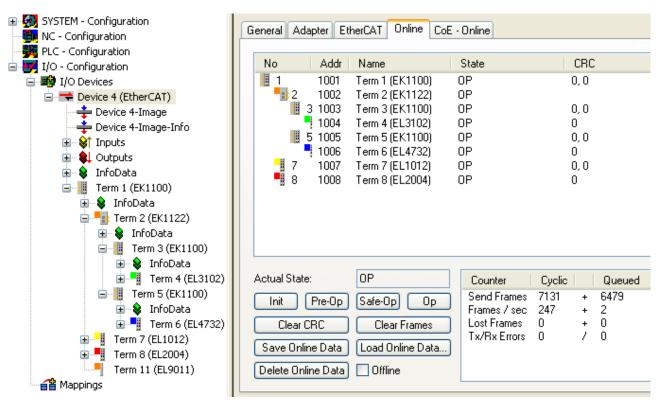


Fig. 7: Example configuration with EK1122

The wiring diagram is shown in the TwinCAT online topology, see *Fig. Online topology*. The EK1122 is selected, so that further information is shown. The green bars above the slaves indicate the correct RUN state in all slaves.

BECKHOFF

🔲 Topologie					
Ansicht Offline C	Inline				
		Online Configuration			
EtherCAT Onlin	e Process Data				
Name:	Klemme 2 (EK1122)				
Туре:	EK1122				
EtherCAT Addr:	1002				
Auto Inc Addr:	FFFF				
- Identity					
Vendor Id:	2	Revision No: 0x00100000			
Product Code	x 0x04622c52	Serial No: 0x00000000			
Product/Rev	ision: EK1122-0000-0016				

Fig. 8: Online topology

An error is now generated by disconnecting the link between the upper RJ45 socket (X1) and the EL3102 device. Within a few µs the ESC in the EK1122 detects the lost link and automatically closes the affected port. This has the effect that the next incoming EtherCAT telegram is immediately forwarded to port D (port 3) and the EL4732. The link is missing here; the System Manager indicates this in the online display, see *Fig. Example configuration with interrupted cable*.

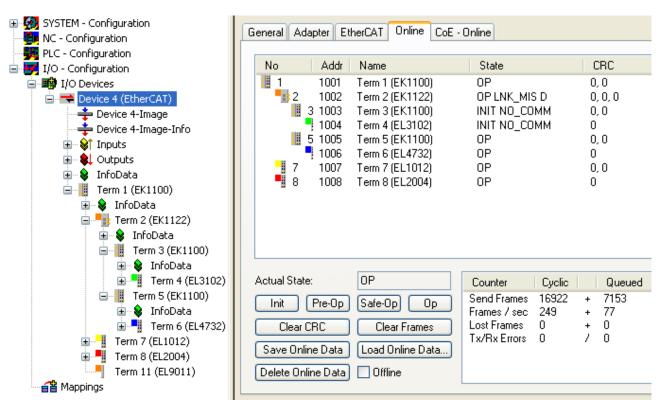


Fig. 9: Example configuration with interrupted cable

The System Manager messages can be interpreted as follows:

- Address 1002 EK1122: "OP LNK:MIS D": The slave is in OP state, although a link is missing at port D
 (3) that should be present according to the configuration
- Address 1003 EK1100: "INIT NO_COMM": since communication with this slave is interrupted its state is shown as INIT
- Address 1004 EL3104: ditto.

i

Logger output

The logger output can be displayed in the lower part of the System Manager (Display--> Show Logger Output). This may be helpful for diagnostic purposes (for link interruptions and other situations).

In the topology view this interruption is indicated by a red border around the affected slaves, see figure below.

RECKHO

Topology 📃 🗖 🔀
View Offline Online
Online Configuration
EtherCAT Online Process Data State Machine Init Safe-Op Bootstrap Init Op Clear Error Current State: OP LNK_MIS D
Requested State: OP Crc Error Counters Port A: 0 Port B: 0 Port C: 0

Fig. 10: Topology view with interrupted line

Note the display of the acyclic frames in *Fig. Example configuration with EK1122* and *Fig. Example configuration with interrupted line*.

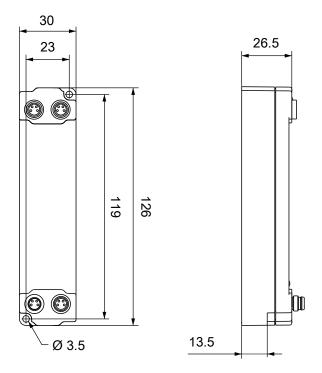
No Addr	Name	State	CRC	No Addr	Name	State	CRC
1 1001	Term 1 (EK1100)	OP	0, 0	1 1001	Term 1 (EK1100)	ST I	0, 0
2 1002	Term 2 (EK1122)	OP		1002	Term 2 (EK1122)	OP LNK_MIS D	0, 0, 0
1003 🔢 🔢	Term 3 (EK1100)	OP	0, 0	1003	Term 3 (EK1100)	INIT NO_COMM	0, 0
1004	Term 4 (EL3102)	OP	0	1004	Term 4 (EL3102)	INIT NO_COMM	0
1005	Term 5 (EK1100)	OP	0,0	1005	Term 5 (EK1100)	OP .	0, 0
1006	Term 6 (EL4732)	UP	0	1006	Term 6 (EL4732)	OP	0
7 1007	Term 7 (EL1012)	OP	0,0	7 1007	Term 7 (EL1012)	OP	0,0
8 1008	Term 8 (EL2004)	OP	0	9 8 1008	Term 8 (EL2004)	OP	0
Actual State:	OP	Counter Cycli	c Queued	Actual State:	OP	Counter Cyclic	Queued
Init Pre-Op	Safe-Op Op	Send Frames 7131	6479	Init Pre-Op	Safe-Op Op	Send Frames 16922	7155
		Frames / sec 247 Lost Frames 0	+ 2			Frames / sec 249 Lost Frames 0	+ 77
Clear CRC	Clear Frames	Tx/Rx Errors 0	, 1 0	Clear CRC	Clear Frames	Tx/Rx Errors 0	/ 0
			· -				

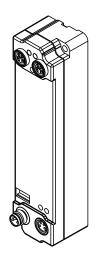
Fig. 11: Comparison of the frame displays

The image on the left shows a small number (2) of acyclic frames sent by the master during the respective second - all slaves are operating properly. The image on the right shows a significant increase (currently 77 acyclic frames/sec): The EtherCAT master has quickly detected that not all slaves are properly taking part in the data exchange. Once the master has located the fault, it continuously tries to restore the connection.

Reconnection

Once the connection has been restored, the EK1122 reports to the master that a link is present again at port D (3). The EtherCAT master will then make its process data available again for this section. One the preparations are complete, it will instruct the EK1122 to re-open port D (3) for regular data exchange. Cyclic and acyclic data traffic with the other EtherCAT slaves continues normally.


External access to EtherCAT diagnostics


The system offers a wide range of options for accessing status and diagnostic information and EtherCAT master functions from the PLC. Almost all information displayed by the System Manager online can also be retrieved via ADS (see figures on this page). System Manager functions can also be triggered via PLC or ADS. Please refer to the relevant sections in the Beckhoff Information System and the notes on EtherCAT diagnostics.

BECKHOFF

5 Mounting and connection

5.1 Dimensions

All dimensions are given in millimeters. The drawing is not true to scale.

Housing features

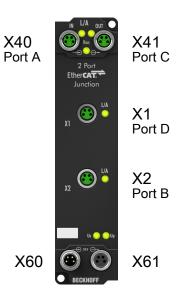
Housing material	PA6 (polyamide)
Sealing compound	polyurethane
Mounting	two mounting holes Ø 3.5 mm for M3
Metal parts	brass, nickel-plated
Contacts	CuZn, gold-plated
Power feed through	max. 4 A
Installation position	variable
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together
Dimensions (H x W x D)	approx. 126 x 30 x 26.5 mm (without connectors)

5.2 Fixing

NOTE

Dirt during assembly

Dirty connectors can lead to malfunctions. Protection class IP67 can only be guaranteed if all cables and connectors are connected.


• Protect the plug connectors against dirt during the assembly.

Mount the module with two M3 screws on the mounting holes in the corners of the module. The mounting holes have no thread.

BECKHOFF

5.3 Connection

5.3.1 Overview

Name	Function	Connector	Tightening torque
X1	EtherCAT junction [▶ 26], Port D	M8 socket	0.4 Nm ¹⁾
X2	EtherCAT junction [▶ 26], Port B	M8 socket	0.4 Nm ¹⁾
X40	EtherCAT input [26], Port A	M8 socket	0.4 Nm ¹⁾
X41	EtherCAT downstream connection [> 26], Port C	M8 socket	0.4 Nm ¹⁾
X60	Supply voltage input [28]	M8 plug connector	0.4 Nm ¹⁾
X61	Supply voltage downstream connection [> 28]	M8 socket	0.4 Nm ¹⁾

¹⁾ Mount plugs on these connectors using a torque wrench, e.g. ZB8801 from Beckhoff.

5.3.2 EtherCAT

5.3.2.1 Connectors

NOTE

Risk of confusion: supply voltages and EtherCAT

Defect possible through incorrect insertion.

 Observe the color coding of the connectors: black: Supply voltages green: EtherCAT

The EtherCAT connections are implemented as green M8 sockets.

Fig. 12: EtherCAT connector

EtherCAT	M8 connector	Core colors	Core colors		
Signal	Contact	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9031 and old versions of ZB9030, ZB9032, ZK1090-3xxx- xxxx	TIA-568B	
Tx +	1	yellow ¹⁾	orange/white	white/orange	
Tx -	4	orange ¹⁾	orange	orange	
Rx +	2	white ¹⁾	blue/white	white/green	
Rx -	3	blue ¹⁾	blue	green	
Shield	Housing	Shield	Shield	Shield	

¹⁾ Core colors according to EN 61918

Adaptation of core colors for cables ZB9030, ZB9032 and ZK1090-3xxxx-xxxx

For standardization, the core colors of the ZB9030, ZB9032 and ZK1090-3xxx-xxxx cables have been changed to the EN61918 core colors: yellow, orange, white, blue. So there are different color codes in circulation. The electrical properties of the cables have been retained when the core colors were changed.

5.3.2.2 Status LEDs

L/A (Link/Act)

A green LED labelled "L/A" is located next to each EtherCAT socket. The LED indicates the communication state of the respective socket:

LED	Meaning
off	no connection to the connected EtherCAT device
lit	LINK: connection to the connected EtherCAT device
flashes	ACT: communication with the connected EtherCAT device

Run

Each EtherCAT slave has a green LED labelled "Run". The LED signals the status of the slave in the EtherCAT network:

LED	Meaning
off	Slave is in "Init" state
flashes uniformly	Slave is in "Pre-Operational" state
flashes sporadically	Slave is in "Safe-Operational" state
lit	Slave is in "Operational" state

Description of the EtherCAT slave states

5.3.2.3 Cables

For connecting EtherCAT devices only shielded Ethernet cables that meet the requirements of at least category 5 (CAT5) according to EN 50173 or ISO/IEC 11801 should be used.

EtherCAT uses four wires for signal transmission.

Thanks to automatic line detection ("Auto MDI-X"), both symmetrical (1:1) or cross-over cables can be used between Beckhoff EtherCAT.

Detailed recommendations for the cabling of EtherCAT devices

5.3.3 Supply voltages

A WARNING

Power supply from SELV/PELV power supply unit!

SELV/PELV circuits (Safety Extra Low Voltage, Protective Extra Low Voltage) according to IEC 61010-2-201 must be used to supply this device.

Notes:

- SELV/PELV circuits may give rise to further requirements from standards such as IEC 60204-1 et al, for example with regard to cable spacing and insulation.
- A SELV (Safety Extra Low Voltage) supply provides safe electrical isolation and limitation of the voltage without a connection to the protective conductor, a PELV (Protective Extra Low Voltage) supply also requires a safe connection to the protective conductor.

Observe the UL requirements

• When operating under UL conditions, observe the warnings in the chapter UL Requirements [> 31].

The EtherCAT Box has one input for two supply voltages:

Control voltage U_s

The following sub-functions are supplied from the control voltage U_s:

- the fieldbus
- the processor logic
- typically the inputs and the sensors if the EtherCAT Box has inputs.
- Peripheral voltage U_P

For EtherCAT Box modules with digital outputs the digital outputs are typically supplied from the peripheral voltage U_{p} . U_{p} can be supplied separately. If U_{p} is switched off, the fieldbus function, the function of the inputs and the supply of the sensors are maintained.

The exact assignment of U_s and U_P can be found in the pin assignment of the I/O connections.

Redirection of the supply voltages

The power IN and OUT connections are bridged in the module. Hence, the supply voltages U_s and U_p can be passed from EtherCAT Box to EtherCAT Box in a simple manner.

NOTE

Note the maximum current!

Ensure that the permitted current for the connectors is not exceeded when routing the supply voltages U_s and U_p :

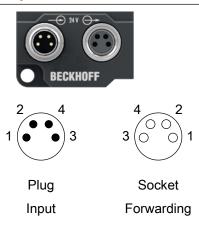
M8 connector: max. 4 A 7/8" connector: max 16 A

NOTE

Unintentional cancellation of the electrical isolation of GND_s and GND_P possible.

In some types of EtherCAT Box modules the ground potentials GND_s and GND_P are connected.

• If several EtherCAT Box modules are supplied with the same electrically isolated voltages, check whether there is an EtherCAT Box among them in which the ground potentials are connected.


5.3.3.1 Connectors

NOTE

Risk of confusion: supply voltages and EtherCAT

Defect possible through incorrect insertion.

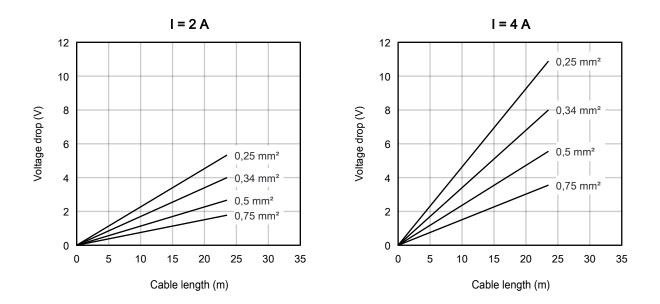
 Observe the color coding of the connectors: black: Supply voltages green: EtherCAT

Fig. 13: M8 connector

Contact	Function	Description	Core color ¹⁾
1	Us	Control voltage	Brown
2	U _P	Peripheral voltage	White
3	GNDs	GND to U _s	Blue
4	GND _P	GND to U _P	Black

¹⁾ The core colors apply to cables of the type: Beckhoff ZK2020-3xxx-xxxx

5.3.3.2 Status LEDs



LED	Display	Meaning
U _s (control voltage)	off	The supply voltage U _s is not available.
	green illuminated	The supply voltage U _s is available.
U _P (peripheral voltage)	off	The supply voltage U_P is not available.
	green illuminated	The supply voltage U_P is available.

5.3.3.3 Conductor losses

Take into account the voltage drop on the supply line when planning a system. Avoid the voltage drop being so high that the supply voltage at the box lies below the minimum nominal voltage. Variations in the voltage of the power supply unit must also be taken into account.

Voltage drop on the supply line

5.4 UL Requirements

The installation of the EtherCAT Box Modules certified by UL has to meet the following requirements.

Supply voltage

CAUTION!

This UL requirements are valid for all supply voltages of all marked EtherCAT Box Modules! For the compliance of the UL requirements the EtherCAT Box Modules should only be supplied

- by a 24 V_{DC} supply voltage, supplied by an isolating source and protected by means of a fuse (in accordance with UL248), rated maximum 4 Amp, or
- by a 24 V_{DC} power source, that has to satisfy NEC class 2.
 A NEC class 2 power supply shall not be connected in series or parallel with another (class 2) power source!

▲ CAUTION

CAUTION!

To meet the UL requirements, the EtherCAT Box Modules must not be connected to unlimited power sources!

Networks

▲ CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules must not be connected to telecommunication networks!

Ambient temperature range

▲ CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules has to be operated only at an ambient temperature range of -25 °C to +55 °C!

Marking for UL

All EtherCAT Box Modules certified by UL (Underwriters Laboratories) are marked with the following label.

Fig. 14: UL label

5.5 ATEX notes

5.5.1 ATEX - Special conditions

A WARNING

Observe the special conditions for the intended use of EtherCAT Box modules in potentially explosive areas – directive 94/9/EU.

- The certified components are to be installed with a <u>BG2000-0000 or BG2000-0010 protection enclosure</u> [<u>33]</u> that guarantees a protection against mechanical hazards!
- If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values!
- Observe the permissible ambient temperature range of 0 to 55°C for the use of EtherCAT Box modules in potentially explosive areas!
- Measures must be taken to protect against the rated operating voltage being exceeded by more than 40% due to short-term interference voltages!
- The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

- EN 60079-0: 2006
- EN 60079-15: 2005

Marking

The EtherCAT Box modules certified for potentially explosive areas bear the following marking:

or

Batch number (D number)

The EtherCAT Box modules bear a batch number (D number) that is structured as follows:

D: WW YY FF HH

WW - week of production (calendar week) YY - year of production FF - firmware version HH - hardware version

Example with batch number 29 10 02 01:

- 29 week of production 29
- 10 year of production 2010
- 02 firmware version 02
- 01 hardware version 01

5.5.2 BG2000 - EtherCAT Box protection enclosures

A WARNING

Risk of electric shock and damage of device!

Bring the EtherCAT system into a safe, powered down state before starting installation, disassembly or wiring of the modules!

ATEX

WARNING

Mount a protection enclosure!

To fulfill the <u>special conditions according to ATEX [} 32]</u>, a BG2000-0000 or BG2000-0010 protection enclosure has to be mounted over the EtherCAT Box.

Installation

Put the cables for EtherCAT, power supply and sensors/actuators through the hole of the protection enclosure.

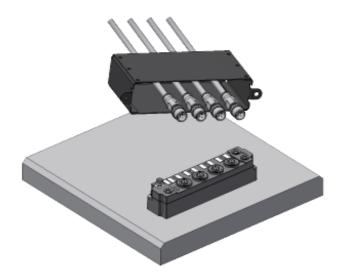


Fig. 15: BG2000 - putting the cables

Fix the wires for EtherCAT, power supply and sensors/actuators to the EtherCAT Box.

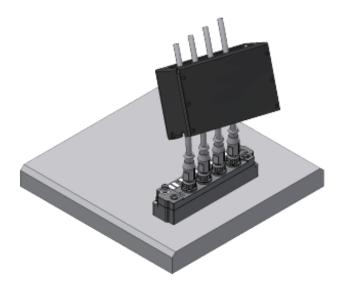


Fig. 16: BG2000 - fixing the cables

Mount the protection enclosure over the EtherCAT Box.

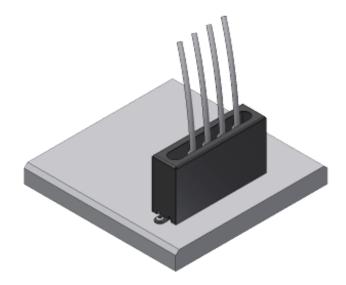


Fig. 17: BG2000 - mounting the protection enclosure

5.5.3 ATEX Documentation

Notes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX)

Pay also attention to the continuative documentationNotes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX) that is available in the download area of the Beckhoff homepage http://www.beckhoff.com!

Disposal

Products marked with a crossed-out wheeled bin shall not be discarded with the normal waste stream. The device is considered as waste electrical and electronic equipment. The national regulations for the disposal of waste electrical and electronic equipment must be observed.

6 Commissioning

6.1 Integration in TwinCAT

The procedure for integration in a TwinCAT project is described in these Quick start guide.

The designations of the EtherCAT ports are different in TwinCAT than on the imprint on the housing. You can find the correlation between the different designations in the <u>Connection overview [> 25]</u>.

7 Appendix

7.1 General operating conditions

Protection degrees (IP-Code)

The standard IEC 60529 (DIN EN 60529) defines the degrees of protection in different classes.

1. Number: dust protection and touch guard	Definition
0	Non-protected
1	Protected against access to hazardous parts with the back of a hand. Protected against solid foreign objects of Ø 50 mm
2	Protected against access to hazardous parts with a finger. Protected against solid foreign objects of Ø 12.5 mm.
3	Protected against access to hazardous parts with a tool. Protected against solid foreign objects Ø 2.5 mm.
4	Protected against access to hazardous parts with a wire. Protected against solid foreign objects Ø 1 mm.
5	Protected against access to hazardous parts with a wire. Dust-protected. Intrusion of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the device or to impair safety.
6	Protected against access to hazardous parts with a wire. Dust-tight. No intrusion of dust.
2. Number: water* protection	Definition
0	Non-protected
1	Protected against water drops
2	Protected against water drops when enclosure tilted up to 15°.
3	Protected against spraying water. Water sprayed at an angle up to 60° on either side of the ver- tical shall have no harmful effects.
4	Protected against splashing water. Water splashed against the disclosure from any direction shall have no harmful effects
5	Protected against water jets
6	Protected against powerful water jets
7	Protected against the effects of temporary immersion in water. Intrusion of water in quantities causing harmful effects shall not be possible when the enclosure is temporarily immersed in water for 30 min. in 1 m depth.

*) These protection classes define only protection against water.

Chemical Resistance

The Resistance relates to the Housing of the IP67 modules and the used metal parts. In the table below you will find some typical resistance.

Character	Resistance
Steam	at temperatures >100°C: not resistant
Sodium base liquor (ph-Value > 12)	at room temperature: resistant > 40°C: not resistant
Acetic acid	not resistant
Argon (technical clean)	resistant

Key

- resistant: Lifetime several months
- · non inherently resistant: Lifetime several weeks
- not resistant: Lifetime several hours resp. early decomposition

7.2 Accessories

Mounting

Ordering information	Description	Link
ZS5300-0011	Mounting rail	<u>Website</u>

Labeling material, protective caps

Ordering information	Description
ZS5000-0010	Protective cap for M8 sockets, IP67 (50 pieces)
ZS5100-0000	Inscription labels, unprinted, 4 strips of 10
ZS5000-xxxx	Printed inscription labels on enquiry

Cables

A complete overview of pre-assembled cables for fieldbus components can be found here.

Ordering information	Description	Link
ZK1090-3xxx-xxxx	EtherCAT cable M8, green	<u>Website</u>
ZK1093-3xxx-xxxx	EtherCAT cable M8, yellow	<u>Website</u>
ZK2020-3xxx-xxxx	Power cable M8, 4-pin	<u>Website</u>

Tools

Ordering information	Description
ZB8801-0000	Torque wrench for plugs, 0.4…1.0 Nm
ZB8801-0001	Torque cable key for M8 / wrench size 9 for ZB8801-0000

Further accessories

Further accessories can be found in the price list for fieldbus components from Beckhoff and online at <u>https://www.beckhoff.com</u>.

7.3 Version identification of EtherCAT devices

7.3.1 General notes on marking

Designation

A Beckhoff EtherCAT device has a 14-digit designation, made up of

- · family key
- type
- version
- revision

Example	Family	Туре	Version	Revision
EL3314-0000-0016	EL terminal (12 mm, non- pluggable connection level)	3314 (4-channel thermocouple terminal)	0000 (basic type)	0016
ES3602-0010-0017	ES terminal (12 mm, pluggable connection level)		0010 (high- precision version)	0017
CU2008-0000-0000	CU device	2008 (8-port fast ethernet switch)	0000 (basic type)	0000

Notes

- The elements mentioned above result in the **technical designation**. EL3314-0000-0016 is used in the example below.
- EL3314-0000 is the order identifier, in the case of "-0000" usually abbreviated to EL3314. "-0016" is the EtherCAT revision.
- The order identifier is made up of
 - family key (EL, EP, CU, ES, KL, CX, etc.)
 - type (3314)
 - version (-0000)

• The **revision** -0016 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff.

In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.

Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for download from the Beckhoff web site. From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. *"EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)"*.

• The type, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal.

7.3.2 Version identification of EP/EPI/EPP/ER/ERI boxes

The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH

- KK week of production (CW, calendar week)
- YY year of production
- FF firmware version
- HH hardware version

Example with serial number 12 06 3A 02:

- 12 production week 12
- 06 production year 2006
- 3A firmware version 3A
- 02 hardware version 02

Exceptions can occur in the **IP67 area**, where the following syntax can be used (see respective device documentation):

Syntax: D ww yy x y z u

D - prefix designation ww - calendar week

yy - year

- x firmware version of the bus PCB
- y hardware version of the bus PCB
- z firmware version of the I/O PCB
- u hardware version of the I/O PCB

Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O PCB: 1

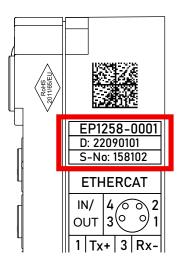


Fig. 18: EP1258-00001 IP67 EtherCAT Box with batch number/DateCode 22090101 and unique serial number 158102

BECKHOFF

7.3.3 Beckhoff Identification Code (BIC)

The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.

Fig. 19: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

- · on the packaging unit
- directly on the product (if space suffices)
- on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.

Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it.

Following information is possible, positions 1 to 4 are always present, the other according to need of production:

BECKHOFF

	Type of information	Explanation	Data identifier	Number of digits incl. data identifier	Example
1	Beckhoff order number	Beckhoff order number	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Unique serial number, see note below	SBTN	12	SBTNk4p562d7
3	Article description	Beckhoff article description, e.g. EL1008	1K	32	1KEL1809
4	Quantity	Quantity in packaging unit, e.g. 1, 10, etc.	Q	6	Q 1
5	Batch number	Optional: Year and week of production	2P	14	2P401503180016
6	ID/serial number	Optional: Present-day serial number system, e.g. with safety products	51S	12	<mark>51S</mark> 678294
7	Variant number	Optional: Product variant number on the basis of standard products	30P	32	30PF971, 2*K183

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from positions 1 to 4 and with the above given example value on position 6. The data identifiers are highlighted in bold font:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:

Fig. 20: Example DMC **1P**072222**S**BTNk4p562d7**1K**EL1809 **Q**1 **51S**678294

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.

NOTE

This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.

7.3.4 Electronic access to the BIC (eBIC)

Electronic BIC (eBIC)

The Beckhoff Identification Code (BIC) is applied to the outside of Beckhoff products in a visible place. If possible, it should also be electronically readable.

Decisive for the electronic readout is the interface via which the product can be electronically addressed.

K-bus devices (IP20, IP67)

Currently, no electronic storage and readout is planned for these devices.

EtherCAT devices (IP20, IP67)

All Beckhoff EtherCAT devices have a so-called ESI-EEPROM, which contains the EtherCAT identity with the revision number. Stored in it is the EtherCAT slave information, also colloquially known as ESI/XML configuration file for the EtherCAT master. See the corresponding chapter in the EtherCAT system manual (Link) for the relationships.

The eBIC is also stored in the ESI-EEPROM. The eBIC was introduced into the Beckhoff I/O production (terminals, box modules) from 2020; widespread implementation is expected in 2021.

The user can electronically access the eBIC (if existent) as follows:

- With all EtherCAT devices, the EtherCAT master (TwinCAT) can read the eBIC from the ESI-EEPROM
 - From TwinCAT 3.1 build 4024.11, the eBIC can be displayed in the online view.
 - To do this, check the checkbox "Show Beckhoff Identification Code (BIC)" under EtherCAT → Advanced Settings → Diagnostics:

ieneral /	Adapter	EtherCAT Online	CoE - 0	Online					
NetId:	1	69.254.124.140.2.1			Advanced S Export Configu Sync Unit Ass Topolog	ration File		Advanced Settings State Machine Cyclic Frames Online View Cyclic Frames 0000 ESC Rev/Type ¹ Distributed Clocks 0000 ESC Rev/Type ¹ Leo Support 0002 ESC Buld Redundancy 0004 SM/TAMU Crit Emergency 0008 Features	0000 Add Srow Change Courters (State Changes / Not Present)
Frame 0 0	Cmd LWR BRD	Addr 0x01000000 0x0000 0x0130	Len 1 2	WC 1 2	Sync Unit <default></default>	Cycle (ms) 4.000 4.000	Utilizatio 0.17 0.17	Diagnosis 0010 Phys Addr Online View 0021 Configured Station Allas' 0030 Access Protect' 0030 Access Protect' 0010 ESC reset' 0101 ESC creat' 01010 ESC Cold' 0101 ESC creat' 01010 ESC Cold' 0101 ESC creat' 01010 ESC Cold' 0101 ESC cold' 0102 Configured Statual 0101 ESC cold' 0103 ESC statual 0110 ESC cold'	Show Production Info

• The BTN and its contents are then displayed:

General Adapter EtherCAT Online CoE - Online

No	Addr	Name	State	CRC	Fw	Hw	Production Data	ItemNo	BTN	Description	Quantity	BatchNo	SerialNo
1	1001	Term 1 (EK1100)	OP	0.0	0	0							
2	1002	Term 2 (EL1018)	OP	0.0	0	0	2020 KW36 Fr	072222	k4p562d7	EL1809	1		678294
3	1003	Term 3 (EL3204)	OP	0.0	7	6	2012 KW24 Sa						
4		Term 4 (EL2004)	OP	0.0	0	0		072223	k4p562d7	EL2004	1		678295
5	1005	Tem 5 (EL1008)	OP	0.0	0	0							
- 6		Term 6 (EL2008)	OP	0.0	0	12	2014 KW14 Mo						
_].7	1007	Term 7 (EK1110)	OP	0	1	8	2012 KW25 Mo						

- Note: as can be seen in the illustration, the production data HW version, FW version and production date, which have been programmed since 2012, can also be displayed with "Show Production Info".
- From TwinCAT 3.1. build 4024.24 the functions FB_EcReadBIC and FB_EcReadBTN for reading into the PLC and further eBIC auxiliary functions are available in the Tc2_EtherCAT Library from v3.3.19.0.
- In the case of EtherCAT devices with CoE directory, the object 0x10E2:01 can additionally by used to display the device's own eBIC; the PLC can also simply access the information here:

• The device must be in PREOP/SAFEOP/OP for access:

Index		Name	Flags	Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
۲	1011:0	Restore default parameters	RO	>1<		
•	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
۲	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- the object 0x10E2 will be introduced into stock products in the course of a necessary firmware revision.
- From TwinCAT 3.1. build 4024.24 the functions FB_EcCoEReadBIC and FB_EcCoEReadBTN for reading into the PLC and further eBIC auxiliary functions are available in the Tc2_EtherCAT Library from v3.3.19.0.
- Note: in the case of electronic further processing, the BTN is to be handled as a string(8); the identifier "SBTN" is not part of the BTN.
- Technical background

The new BIC information is additionally written as a category in the ESI-EEPROM during the device production. The structure of the ESI content is largely dictated by the ETG specifications, therefore the additional vendor-specific content is stored with the help of a category according to ETG.2010. ID 03 indicates to all EtherCAT masters that they must not overwrite these data in case of an update or restore the data after an ESI update.

The structure follows the content of the BIC, see there. This results in a memory requirement of approx. 50..200 bytes in the EEPROM.

- · Special cases
 - If multiple, hierarchically arranged ESCs are installed in a device, only the top-level ESC carries the eBIC Information.
 - If multiple, non-hierarchically arranged ESCs are installed in a device, all ESCs carry the eBIC Information.
 - If the device consists of several sub-devices with their own identity, but only the top-level device is accessible via EtherCAT, the eBIC of the top-level device is located in the CoE object directory 0x10E2:01 and the eBICs of the sub-devices follow in 0x10E2:nn.

Profibus/Profinet/DeviceNet... Devices

Currently, no electronic storage and readout is planned for these devices.

7.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <u>https://www.beckhoff.com</u>

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline:	+49 5246 963 157
Fax:	+49 5246 963 9157
e-mail:	support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- repair service
- · spare parts service
- · hotline service

Hotline:	+49 5246 963 460
Fax:	+49 5246 963 479
e-mail:	service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone:	+49 5246 963 0
Fax:	+49 5246 963 198
e-mail:	info@beckhoff.com
web:	https://www.beckhoff.com

More Information: www.beckhoff.com/ep1122-0001

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

